Using structural and functional indicators to develop numeric nutrient criteria for Utah's wadeable streams

Mike Shupryt¹, Jeff Ostermiller¹ & Michelle Baker² 1 Utah DWQ, 2 Utah State University

Which Path Forward?

Nutrient Indicators

- Identify sites with nutrient related problems
 - Allows resource prioritization
 - Triggers monitoring response by DWQ

OR

Nutrient Criteria

- CWA Requirement
- Provides regulatory certainty
- Less flexible and difficult to change

Why use multiple indicators?

Impairment Response Structural Response **Functional Response Pristine** Eutrophication

Indicators

- Functional Indicators
 - Stream Metabolism
 - Nutrient Limitation
 - Organic Matter Storage
 - Decomposition Rates
- Compositional Indicators
 - Macroinvertebrates
 - Diatoms
- Statewide Snapshot

Functional Indicators

Whole Stream Metabolism

$$\Delta DO = GPP - ER \pm K$$

Measures daily production & consumption of oxygen

Stream Metabolism

Stream Metabolism

- Nutrients increase rates of GPP and ER
- High rates of GPP and ER lead to more minimum DO impairments
- Direct tie to aquatic life uses

Functional Indicator	Indicator Group Thresholds
GPP (gO ₂ /m ² /day)	Good < 6.0 > Fair < 10.0 > Poor
ER (gO ₂ /m ² /day)	Good < 5.0 > Fair < 9.0 > Poor

Nutrient Limitation

- Adding the limiting nutrient will have the greatest affect on algal growth
- Nutrient Diffusing Substrates (NDS)
- Control, N, P, & N + P
- Analyze algal growth under different nutrient additions

Nutrient Limitation Results

N	
NUITTIANT	Limitation
INGUICIT	

Site	None	N	Р	N&P	N1 P2	P1 N2
Reference	3	5	0	5	2	0
Moderate Impact	2	1	2	1	1	0
High Impact	6	0	0	0	1	0

- 80% of reference sites have some form of Nitrogen limitation
- 6 of 7 High Impact sites are not limited by nutrients

No limitation likely to occur > 0.42 mg/L TN and > 0.08 mg/L TP

Organic Matter Storage

- Standing stock of all organic matter
 - Autotrophs, heterotrophs & detritus
- Analysis in progress

Decomposition

- Heterotrophic response to nutrients
 - Invertebrates excluded
- Leaf packs and wood veneers
- measured at 0, 3 & 6 weeks
 - Analysis in progress

Indicators

- Functional Indicators
 - Stream Metabolism
 - Nutrient Limitation
 - Organic Matter Storage
 - Decomposition Rates
- Compositional Indicators
 - Macroinvertebrates
 - Diatoms
- Statewide Snapshot

Taxonomic Indicator Threshold Analysis -TITAN

- Uses individual taxon responses instead of community metrics/composition
- Identifies and categorizes taxa into two categories
 - Negative responders (sensitive)
 - Positive responders (tolerant)
- Ideal for developing numeric criteria

Respond negatively to increasing nutrients

Respond positively to increasing nutrients

Multiple Lines of Evidence TN

TITAN-Sensitive inverts - 0.18 mg/L

TITAN-All significant inverts - 0.40 mg/L

TITAN-Tolerant inverts - 0.41 mg/L

O/E biologic impairments – 0.43 mg/L

Stream Metabolism 0.24 & 1.28 mg/L Nutrient Limitation - 0.42 mg/L

Multiple Lines of Evidence TP

TITAN-Sensitive inverts - 0.011 mg/L

TITAN-All significant inverts – 0.015 mg/L

TITAN-Tolerant inverts – 1.8 mg/L

Diatom TITAN - 0.045 mg/L

O/E biologic impairments – 0.045 mg/L

Stream Metabolism 0.02 & 0.09 mg/L

Nutrient Limitation - 0.08 mg/L

Indicators

- Functional Indicators
 - Stream Metabolism
 - Nutrient Limitation
 - Organic Matter Storage
 - Decomposition Rates
- Compositional Indicators
 - Macroinvertebrates
 - Diatoms
- Statewide Snapshot

Doccible

What's the Number???

			* T
	2000		
	2222	2222	
MANA A	2222		222

Possible Criteria (mg/L)	Percent Impaired	Stream Miles Impaired	
Min 0.24	50%	~6700	Too Low??
Medium 0.45	30%	~4000	Maybe??
Max 1.2	10%	~1300	Too High??

TP

Criteria (mg/L)	Impaired	Impaired	
Min 0.011	60%	~8000	Too Low??
Medium 0.045	25%	~3400	Maybe??
Max 0.08	10%	~1300	Too High??

Stroom Milas

Which Path Forward?

Nutrient Indicators

- Identify sites with nutrient related problems
 - Allows resource prioritization
 - Triggers monitoring response by DWQ

OR

Nutrient Criteria

- CWA Requirement
- Provides regulatory certainty
- Less flexible and difficult to change

- Apply numeric nutrient *criteria* to all category 1 antidegradation waters
 - Cat 1 are mostly high elevation waters on USFS land
 - Immediate protection of high quality waters
- Apply numeric nutrient indicators to all other waterbodies
 - Make certain nutrients are cause of impairments in multi stressor waterbodies
 - Consider economic impacts in nutrient reduction strategies
 - Consider appropriate uses and best attainable conditions
 - Allows time for additional investigations

Questions?

- Special Thanks
 - Utah DWQ
 - Emilie Flemer
 - Suzan Tahir
 - Jared Terry
 - Emily Bartusek
 - Kate Tipple
 - Alex Anderson
 - Ben Holcomb
 - USU
 - Michelle Baker
 - Bethany Neilson
 - Andrew Hobson

Nutrient Indicator Ecological Study

Study Design

Reference Sites

Site Locations

- 9 POTWs
- 17 Reference Sites

TITAN Example Data

Negative responding taxa

All significant taxa

Positive responding taxa

Types of Indicators

 In stream/lake concentrations of nitrogen and phosphorus that suggest nutrient impairment

Response Indicators					
	Primary	Compositional	Functional		
	Production	Indicators	Indicators		

 Biological or Ecological responses that confirm or reject suggested impairment

DWQ would only promulgate numeric nutrient criteria when numeric <u>AND</u> response indicators suggest an impairment